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Abstract
Structural studies of polyhedral bodies can help to analyze geometric details of observed
crystalline nanoparticles (NP) where we consider compact polyhedra of cubic point symmetry
as simple models. Their surfaces are described by facets with normal vectors along selected
Cartesian directions (a, b, c) together with their symmetry equivalents forming a direction
family {abc}. Here we focus on polyhedra with facets of families {100}, {110}, and {111},
suggested for metal and oxide NPs with cubic lattices. Resulting generic polyhedra, cubic,
rhombohedral, octahedral, and tetrahexahedral, have been observed as NP shapes by electron
microscopy. They can serve for a complete description of non-generic polyhedra as
intersections of corresponding generic species, not studied by experiment so far. Their structural
properties are shown to be fully determined by only three parameters, facet distances R100, R110,
and R111 of the three facet types. This provides a novel phase diagram to systematically classify
all corresponding polyhedra. Their structural properties, such as shape, size, and facet geometry,
are discussed in analytical and numerical detail with visualization of typical examples. The
results may be used for respective NP simulations but also as a repository stimulating the
structural interpretation of new NP shapes to be observed by experiment.

Supplementary material for this article is available online
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1. Introduction

The detailed characterization of polyhedral bodies, while a
subject of mathematical research since ancient times [1], has
attracted new interest in connection with crystalline nano-
particles (NPs) [2–5]. These particles come in many sizes with
disordered as well as polyhedral shapes. Their properties have
been explored both experimentally and in theoretical studies
due to their exciting physical and chemical behavior, which
deviates often from that of corresponding bulk material [2–4].

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

Examples are applications in medicine [6–8], of magnetism
[7–10], or in catalytic chemistry where metal and oxide NPs
have become ubiquitous [11–18].

Many crystalline nano- and mesoscopic particles have been
observed in experiments to exhibit polyhedral shape with flat
local surface areas (facets) of high atom density, reminis-
cent of low Miller index planes of corresponding bulk crys-
tal surfaces [10, 19, 20]. Their overall shape often reminds
of compact sections confined by simple polyhedra where
particles of material forming cubic bulk lattices [5, 19, 20] are
found to exhibit, apart from hexagonal [21] and icosahedral
geometry [22, 23], generic polyhedra of cubic symmetry, such
as cubes and octahedra. Examples are NPs of metals, such as
Au [24–26], Cu [26–28], Rh [17], Pd [14, 15, 17, 29], Pt [16,
17, 30], or of oxides and bromides, such as CeO2 [31], Cu2O
[32], MgO [13], spinel Fe3O4 [7–9], CuBr [33], forming cubes
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and octahedra. Only selected other polyhedral shapes of cubic
symmetry, like tetrahexahedral, have been observed for Pt NPs
[10, 17, 18, 30, 34]. Here a systematic analysis of ideal poly-
hedra with cubic Oh symmetry as NP envelopes can be helpful
to obtain further insight into possible NP shapes and their clas-
sification. Corresponding analytical results of the polyhedral
structure allow estimates of NP sizes depending on the num-
ber of atoms included together with atom densities of the bulk
material. They also give insight into the geometry of possible
facets and their relative orientation at NP surfaces.

At an atomic scale, the facets of the NP surface join to form
edges and corners whose detailed structure can, however, be
rather complex. This is due to the discrete distribution of atom
positions giving rise to corner capping with microfacets and
edge flattening leading to microstrips as discussed earlier [5].
The perturbative effect is even enhanced by local relaxation at
the particle surface and as a result of chemical surface reac-
tions. However, for mesoscopic particles corner capping and
edge flattening at an atomic scale is difficult to observe and is
replaced by surface smoothing which extends over many atom
layers.

In the present work, extending previous theoretical analyses
[5, 35], we focus on geometrical details of polyhedra of cubic
Oh symmetry with their symmetry center at the origin of a
Cartesian coordinate system. The polyhedral surfaces can be
described by facets representing planar sections with normal
vectors along selected Cartesian directions (a, b, c) together
with their Oh symmetry equivalents. For NPs of metals, oxides
and other material with cubic lattice geometry, possible facets
are observed to represent sections of high-density monolay-
ers of the cubic bulk, characterized by Miller index famil-
ies {hkl} = {100}, {110}, and {111} [20], which seem to
be energetically preferred. This suggests polyhedra with facet
normal vectors (a, b, c) = (1, 0, 0), (1, 1, 0), and (1, 1, 1)
together with their Oh symmetry equivalents. The analysis
reveals different types of generic polyhedra which can serve
for the definition of general polyhedra described as intersec-
tions of corresponding generic species. Their structural prop-
erties, such as shape, size, and surface facets, are shown to be
fully determined by only three structure parameters, the facet
distances R100, R110, R111. In fact, all polyhedral shapes, inde-
pendent of size, can already be characterized by only two rel-
ative facet distances, such as x110 = √2 R110/R100 and x111 = √3
R111/R100, which provides a novel phase diagram of all poly-
hedral shapes, allowing a systematic classification of all com-
pact polyhedra of cubic symmetry exhibiting facets of direc-
tion families {100}, {110}, and {111}. The continuous vari-
ation of the three structure parameters leads to a simplified
mathematical description of possible shapes of cubic nano-
and meso-size particles as compared to a more complex dis-
crete structural description published earlier [5].

We also consider generic polyhedra of Oh symmetry which
are confined by facets of one general direction family {abc},
yielding up to 48 different facet directions. These hexoctahed-
ral polyhedra can be used to model cubic NPs with higher
Miller index facets reflecting sections of stepped and kinked
facet surfaces [20], also observed in some cases by electron
microscopy [18, 34]. Clearly, their structural properties are

fully described by a facet distance Rabc and all facet indices,
a, b, c, determining the corresponding facet normal vector
family.

All structural results of the present polyhedra are discussed
in analytical and numerical detail with visualization [36] of
characteristic examples. The different sections are structured
identically and presented in parts with very similar phras-
ing to enable easy comparison. Section 2 introduces nota-
tions and definitions used to characterize polyhedral shape
while section 3 discusses results for generic and non-generic
polyhedra in detail. Finally, section 4 summarizes conclu-
sions from the present work. The supplement provides further
details to complement results discussed in section 3.

Altogether, the present analysis offers a sound basis to
describe compact polyhedra of cubic symmetry which may be
used as a repository available for NP simulations. It can help
the interpretation of structures of real compact NPs observed
by experiment and can also stimulate further experimental
research on nano- and meso-size particle structures not iden-
tified so far.

2. Notation and formal definitions

We consider compact polyhedra of central Oh symmetry
confined by finite sections of planes (facets) which can be
described by facet normal vectors eabc and facet distances Rabc
from the polyhedral center, resulting in facet vectors

Rabc = Rabceabc, eabc = 1/w(a,b,c) , w= √
(
a2 + b2 + c2

)
,

(1)

with eabc described by facet indices a, b, c in Cartesian
coordinates relative to the polyhedral center. Due to the poly-
hedral Oh symmetry, each facet normal vector eabc implies a
number of symmetry equivalents ea′b′c′ originating from all
Oh symmetry operations applied to eabc. Together with eabc,
this forms a family of symmetry equivalent facet normal vec-
tors, denoted e{abc} in the following and corresponding to a
direction family defined as {abc}. (Note that in the following
we use a short hand notation taken from crystallography [20]:
curly brackets {…} to indicate facet normal direction families
with all members and normal brackets (…) referring to spe-
cific directions.)

In themost general case, applying all 48Oh symmetry oper-
ations to a vector eabc, where a, b, and c are all finite and dif-
ferent from each other yields a direction family{abc} of 48
members described by

e{abc} = 1/w (±a, ± b, ± c) , 1/w (±a, ± c, ± b) ,

1/w (±b, ± a, ± c) ,1/w (±b, ± c, ± a)

1/w (±c, ± a, ± b) , 1/w (±c, ± b, ± a) . (2a)

Special cases resulting in direction families
{100},{110},{111}are

e{100} = (±1, 0, 0) , (0, ± 1, 0) , (0, 0, ± 1) , (2b)
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e{110} = 1/√2 (±1, ± 1, 0) , 1/√2 (±1, 0, ± 1) ,

1/√2 (0, ± 1, ± 1) (2c)

e{111} = 1/√3 (±1, ± 1, ± 1) (2d)

which yield smaller families of 6, 12, and 8 members,
respectively.

As a result of the Oh symmetry, polyhedral facets appear
always as parallel pairs with facet vectors ±Rabc on oppos-
ite sides of the polyhedron. This leads to polyhedral diamet-
ers Dabc = 2Rabccharacterizing the size of the polyhedron.
Altogether, the most general polyhedra of Oh symmetry can
be denoted by

P
(
R{abc};R{a ′b ′c ′};R{a ′ ′b ′ ′c ′ ′}; . . .

)
= P

(
Rabc, {abc} ;Ra ′b ′c ′ ,

{
a ′b ′c ′

}
;Ra ′ ′b ′ ′c ′ ′ ,

{
a ′ ′b ′ ′c ′ ′

}
; . . .

)
(3)

depending on the number of different facet types. Here we dis-
tinguish between generic and non-generic species where gen-
eric polyhedra are defined by facets of only one direction fam-
ily {abc} whereas non-generic polyhedra include several dif-
ferent direction families as noted in definition (3).

The above notations and definitions will be used in the fol-
lowing discussion. Note that some of the expressions of corner
coordinates in section 3.2 use auxiliary parameters g, h which
are defined separately for each section.

3. Discussion

3.1. Generic polyhedra

Generic polyhedra are confined by facets of only one direc-
tion family {abc} and are denoted P(R{abc}). Here the simplest
examples are those for {abc} = {100}, {110}, and {111}
which will be discussed before the general case {abc}, which
includes also the simple examples, is treated in detail.

3.1.1. Cubic polyhedra P(R{100}). Cubic polyhedra have been
observed in experiments on numerous nano- and mesoscopic
particles, including metallic (e.g. Cu [26–28], Au [25], Pt
[16]) and oxidic (e.g. Cu2O [32], Fe3O4 [7–10], MgO [13]).
According to (2b) and (3), these polyhedra are confined by all
6 {100} facets with facet distances R100 defining, as expected,
the cubic polyhedron, see figure 1(a).

The 8 polyhedral corners are described by vectors C{111}

relative to the center where in Cartesian coordinates

C{111} = R100 (±1, ± 1, ± 1) . (4)

Euler’s polyhedron rule [1] states that the numbers of
corners Nc, facets Nf, and edges Ne of a convex polyhedron
are related by

Nc +Nf −Ne = 2. (5)

This yields P(R{100}) with corners connected by
12 (8 + 6-2) edges, see figure 1(a).

An analysis shows that all 6 facets are of the same square
shape where each {100} facet extends between four adjacent
cornersC{111}, such asC(111),C(−111),C(−1-11),C(1-11). The res-
ulting four edges connect corners, such as C(111) with C(−111),
at distances da1 given by

da1 = 2R100. (6)

The largest distance from the polyhedral center to its sur-
face along (a, b, c) directions, sabc(R100), is given by

s100 (R100) = R100 (7a)

s110 (R100) = √2R100 (7b)

s111 (R100) = √3R100. (7c)

Further, the area of each facet is given by F0 with

F0 =
∣∣∣(C(−111) −C(111)

)
×

(
C(1−11) −C(111)

) ∣∣∣= 4R100
2.

(8)

Thus, the total facet surface, Fsurf (sum over all facet areas)
and the volume V tot of the polyhedron are given by

Fsurf = 6F0 = 24R100
2 (9)

Vtot = FsurfR100/3= 8R100
3. (10)

Figure 1(b) shows a NP of atom balls representing a simple
cubic (sc) crystal section where a polyhedron P(R{100}) serves
as envelope with its corners C{111} coinciding with atom sites.

3.1.2. Rhombohedral polyhedra P(R{110}). Rhombohedral
polyhedra have been mentioned in the experimental literature
[18, 34] but clear particle images do not seem to exist so far.
According to (2c) and (3), these polyhedra are confined by all
12 {110} facets with facet distances R110 defining the rhom-
bohedral polyhedron, see figure 2(a).

The 14 polyhedral corners fall in two groups of 6 and 8
each, described by vectorsC{100} andC{111} relative to the cen-
ter, where in Cartesian coordinates

C{100} = √2R110 (±1, 0, 0) , = √2R110 (0, ± 1, 0) ,

= √2R110 (0, 0, ± 1) (11a)

C{111} = 1/√2R110 (±1, ± 1, ± 1) . (11b)

With P(R{110}) yielding 12 facets and 14 corners the number
of its polyhedral edges amounts to 24 according to (5), see
figure 2(a).

An analysis shows that all 12 facets are of the same
rhombic shape where each {110} facet extends between adja-
cent corners C{100} and C{111}, such as C(100), C(111), C(001),

3



J. Phys.: Condens. Matter 36 (2024) 045303 K E Hermann

Figure 1. (a) Sketch of generic cubic polyhedron P(R{100}) with front facets in blue and back facets in black. (b) Nanoparticle of gray atom
balls of a sc crystal section filling the polyhedron, see text. Yellow balls correspond to corners C{111} which coincide with atom sites.

Figure 2. (a) Sketch of generic rhombohedral polyhedron P(R{110}) with front facets in blue and back facets in black. (b) Nanoparticle of
gray atom balls of a bcc lattice section filling the polyhedron. Yellow balls correspond to corners C{100} and C{111} which coincide with
atom sites.

C(1-11). The resulting four edges connect corners, such asC(100)

with C(111), at distances db1 given by

db1 = √(3/2)R110. (12)

Thus, the polyhedron can be described as a rhombic
dodecahedron reminding of the shape of Wigner–Seitz cells
of the face-centered cubic (fcc) crystal lattice [37].

The largest distance from the polyhedral center to its sur-
face along (a, b, c) directions, sabc(R110), is given by

s100 (R110) = √2R110 (13a)

s110 (R110) = R110 (13b)

s111 (R110) = √(3/2)R110. (13c)

Further, the area of each facet is given by F0 with

F0 =
∣∣∣(C(001) −C(111)

)
×
(
C(100) −C(111)

)∣∣∣= √2R110
2.

(14)

4
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Thus, the total facet surface, Fsurf (sum over all facet areas)
and the volume V tot of the polyhedron are given by

Fsurf = 12F0 = 12√2R110
2 (15)

Vtot = FsurfR110/3= 4√2R110
3. (16)

Figure 2(b) shows a NP of atom balls representing a
body-centered cubic (bcc) crystal section where a polyhedron
P(R{110}) serves as envelope with its corners C{100} and C{111}

coinciding with atom sites.

3.1.3. Octahedral polyhedra P(R{111}). Octahedral polyhedra
have been observed in experiments on numerous nano- and
mesoscopic particles, including metallic (e.g. Cu [28], Pd
[14, 15, 29], Au [24, 25], Pt [16]) and oxidic (e.g. Cu2O
[28, 32], CeO2 [31], MgO [13]). According to (2d) and (3),
these polyhedra are confined by all 8 {111} facets with
facet distances R111 defining the octahedral polyhedron, see
figure 3(a).

The 6 polyhedral corners are described by vectors C{100}

relative to the center where in Cartesian coordinates

C{100} = √3R111 (±1, 0, 0) , = √3R111 (0, ± 1, 0) ,

= √3R111 (0, 0, ± 1) . (17)

With P(R{111}) yielding 8 facets and 6 corners the number
of its polyhedral edges amounts to 12 according to (5), see
figure 3(a).

An analysis shows that all 8 facets are of the same equilat-
eral triangular shape where each {111} facet extends between
adjacent corners C{100}, such as C(100), C(010), C(001). The res-
ulting three edges connect corners, such as C(010) with C(100),
at distances dc1 given by

dc1 = √6R111. (18)

The largest distance from the polyhedral center to its sur-
face along (a, b, c) directions, sabc(R111), is given by

s100 (R111) = √3R111 (19a)

s110 (R111) = √(3/2)R111 (19b)

s111 (R111) = R111. (19c)

Further, the area of each facet is given by F0 with

F0 = 1/2
∣∣∣(C(100) −C(001)

)
×

(
C(010) −C(001)

) ∣∣∣
= (3/2)√3R111

2. (20)

Thus, the total facet surface, Fsurf (sum over all facet areas)
and the volume V tot of the polyhedron are given by

Fsurf = 8F0 = 12√3R111
2 (21)

Vtot = FsurfR111/3= 4√3R111
3. (22)

Figure 3(b) shows a NP of atom balls representing a fcc
crystal section where a polyhedron P(R{111}) serves as envel-
ope with its corners C{100} coinciding with atom sites.

3.1.4. Hexoctahedral polyhedra P(R{abc}). Hexoctahedral
polyhedra (including trisoctahedral, trapezohedral, and tetra-
hexahedral) have been discussed in the literature but only in a
few cases (Pd [18], Pt [18, 30, 34]) been observed. A system-
atic classification, discussed in section S.1 of the supplement,
seems to be missing. According to (2a) and (3), these poly-
hedra are confined by up to 48 elementary {abc} facets with
facet distances Rabc. If values of a, b, c coincide or equal zero,
different elementary facets can join to yield larger faces and
the number of facet normal vectors decreases to 24, 12, 8, or 6
facets as discussed in section S.1 of the supplement. Here we
focus on the general case of a> b> c> 0 which results in 48
different {abc} facets, see figure 4(a).

As a result of the overall Oh symmetry of the P(R{abc}) poly-
hedron, its corners can appear only along selected directions
from the center given by vectors e{100}, e{110}, e{111} according
to (2b)–(2d). This yields possible corner vectors

C{hkl} = phkle{hkl} , {hkl}= {100} , {110} , {111} (23)

where C{hkl} must point to several joining {abc} facets. This
requires that

C{hkl}e{abc} = phkl
(
e{hkl}e{abc}

)
= Rabc,

phkl = Rabc/
(
e{hkl}e{abc}

)
. (24)

Together with (2a)–(2d) we obtain

e{100}e{abc} = a/w, C{100} = Rabcw/ae{100}
(25a)

e{110}e{abc} = (a+ b)/
(
√2w

)
, C{110} = Rabcw√2/(a+ b) e{110}

(25b)

e{111}e{abc} = (a+ b+ c)/
(
√3w

)
,

C{111} = Rabcw√3/(a+ b+ c) e{111} (25c)

describing, altogether, 26 different corners. With P(R{abc})
yielding 48 facets and 26 corners the number of its polyhedral
edges amounts to 72 according to (5), see figure 4(a).

An analysis shows that all 48 {abc} facets are of triangu-
lar shape. There are two sets of 24 identical facets each where
the facets of the second set are obtained as mirror images of
those of the first. Each facet triangle extends between adja-
cent corners C{100}, C{110}, and C{111}, such as C(100), C(110),
C(111). The resulting three edges connect corners C{100} with
C{110}, C{100} with C{111}, and C{110} with C{111}, at different
distances dd1, dd2, and dd3 given by

dd1 = Rabcw√
(
a2 + b2

)
/ [a(a+ b)] (26a)

5
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Figure 3. (a) Sketch of generic octahedral polyhedron P(R{111}) with front facets in blue and back facets in black. (b) Nanoparticle of gray
atom balls of an fcc lattice section filling the polyhedron. Yellow balls correspond to corners C{100} which coincide with atom sites.

Figure 4. (a) Sketch of polyhedron P(R{abc}) for a = 7, b = 3, c = 1 with front facets in blue and back facets in black. (b) Nanoparticle of
gray atom balls of a sc lattice section filling the polyhedron. Yellow balls correspond to corners C{110} and C{111} which coincide with atom
sites.

dd2 = Rabcw√[2a2 + (b+ c)2)] /[a(a+ b+ c)] (26b)

dd3 = Rabcw√
[
(a+ b)2 + 2c2

)]
/ [(a+ b)(a+ b+ c)] .

(26c)

Further, the area of each facet is given by F0 with

F0 = 1/2 |
(
C(110) −C(100)

)
×

(
C(111) −C(100)

)
|

= 1/2(Rabcw)
2w/ [a(a+ b)(a+ b+ c)] . (27)

Thus, the total facet surface, Fsurf (sum over all facet areas)
and the volume V tot of the polyhedron are given by

Fsurf = 48 F0 = 24 (Rabc w)
2w/ [a(a+ b)(a+ b+ c)] (28)

Vtot = FsurfRabc/3= 8 (Rabcw)
3
/ [a(a+ b)(a+ b+ c)] .

(29)

Figure 4(b) shows a NP of atom balls representing a sc crys-
tal section where a polyhedron P(R{abc}) serves as envelope
with its corners C{110} and C{111} coinciding with atom sites.
Note that polyhedral corners C{100} do not appear due to the
discrete distribution of the atom sites. The figure also illus-
trates the stepped/kinked structure of the different facet areas.

Other polyhedra P(R{a′b′c′}) of Oh symmetry, where
components a′, b′, and c′ are not subject to constraints
a′ > b′ > c′ > 0 imposed in this section, can be treated com-
pletely analogous to the present discussion. First, we note that
if a′, b′, c′ are permutations of facet indices a, b, c the poly-
hedra P(R{a′b′c′}) and P(R{abc}) are identical in shape. Second,

6
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mirror symmetry requires that if any of the components a′, b′,
c′ is negative it can be replaced by the corresponding positive
value without affecting the polyhedron shape. Thus, a′, b′, c′

can always be regrouped and its component values inverted to
yield a, b, c with a ⩾ b ⩾ c ⩾ 0 while conserving the poly-
hedron shape. So far, we focused on polyhedra P(R{abc}) where
equality and zero values of the facet indices a, b, c are ignored.
However, all other cases, including P(R{100}), P(R{110}), and
P(R{111}) of sections 3.1.1–3, are discussed in section S.1 of
the supplement.

3.2. Non-generic polyhedra

Non-generic polyhedra of Oh symmetry P(R{abc}; R{a′b′c′};…)
show facets with orientations of more than one family of facet
vectors R{abc}. This can be considered as combining confine-
ments of corresponding different generic polyhedra P(R{abc}),
discussed in section 3.1, which share their symmetry center.
Thus, non-generic polyhedra represent mutual intersections of
more than one generic polyhedron, where one cuts corners and
edges of the other(s) to form additional facets.

In this section we restrict ourselves to non-generic poly-
hedra with up to three selected generic polyhedra, cubic
P(R{100}), rhombohedral P(R{110}), and octahedral P(R{111}),
which offer {100}, {110}, as well as {111} facets with facet
distances R100, R110, and R111. This choice is motivated by the
structure of ideal cubic NPswhose bulk atoms form sections of
cubic crystals (simple, face-, or body-centered) and where cor-
responding facets of {100}, {110}, and {111} families reflect
crystal monolayers of highest atom density [20].

The corresponding facet distances R100, R110, and R111 can
be considered as structure parameters, defining the present
non-generic polyhedra, and their relations with each other
determine the polyhedral shape. In the following, we dis-
cuss the three types of polyhedra, which combine two gen-
eric polyhedra each, i.e. P(R{100}; R{110}), P(R{100}; R{111}),
and P(R{110}; R{111}) in sections 3.2.1–3, before we consider
the most general case of polyhedra as intersections of three
generic polyhedra, P(R{100}; R{110}; R{111}), in section 3.2.4.

3.2.1. Cubo-rhombic polyhedra P(R{100}; R{110}). Non-
generic polyhedra P(R{100}; R{110}), denoted cubo-rhombic,
represent intersections of two generic polyhedra, cubic
P(R{100}) and rhombohedral P(R{110}), see figure 5. If the edges
of the cubic polyhedron P(R{100}) lie inside the rhombohed-
ral polyhedron P(R{110}), the resulting combination P(R{100};
R{110}) will be generic cubic. This requires

s110 (R100)⩽ s110 (R110) . (30)

and according to (7b) and (13b)

R110 ⩾ √2R100. (31)

On the other hand, if the corners of the rhombohedral poly-
hedron P(R{110}) lie inside the cubic polyhedron P(R{100}), the

Figure 5. Sketch of cubo-rhombic polyhedron P(R{100}; R{110}),
R110/R100 = 0.864, with front facets in blue and back facets in black.

resulting combination P(R{100}; R{110}) will be generic rhom-
bohedral. This requires

s100 (R110)⩽ s100 (R100) (32)

and according to (7a) and (13a)

R110 ⩽ 1/√2R100. (33)

Thus, the two generic polyhedra intersect and yield a true
non-generic polyhedron P(R{100}; R{110}) with both {100} and
{110} facets only for facet distances R100, R110 with

1/√2R100 < R110 < √2R100 (34)

while P(R{100}; R{110}) is generic cubic for R110 ⩾ √2 R100 and
generic rhombohedral for R110 ⩽ 1/√2R100. As a consequence,
generic polyhedra P(R{100}) and P(R{110}) can be described
alternatively by non-generic P(R{100}; R{110}) where

P
(
R{100}

)
= P

(
R{100};R{110}

)
with

R110 ⩾ √2R100 (cubic) (35a)

P
(
R{110}

)
= P

(
R{100};R{110}

)
with

R100 ⩾ √2R110 (rhombohedral) (35b)

The surfaces of general cubo-rhombic polyhedra P(R{100};
R{110}) exhibit 6 {100} facets and 12 {110} facets as shown in
figure 5.

There are 32 polyhedral corners which can be evaluated by
methods described in section S.3 of the supplement. They fall
into two groups of 24 and 8 corners each, described by vec-
tors C{1hh} and C{111} relative to the center, where in Cartesian
coordinates

7
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C{1hh} = R100 (±1, ± h, ± h) , = R100 (±h, ± 1, ± h) ,

= R100 (±h, ± h, ± 1)

C{111} = 1/√2R110 (±1, ± 1, ± 1) , h= √2R110/R100 − 1 ,

0⩽ h ⩽ 1. (36)

The 6 {100} facets are of the same square shape where each
facet extends between four adjacent corners C{1hh}, such as
C(1hh),C(1-hh),C(1-h-h),C(1h-h). The resulting four edges connect
corners, such as C(1hh) with C(1-hh), at distances de1 given by

de1 = 2
(
√2R110 −R100

)
. (37)

The 12 {110} facets are of the same hexagonal shape where
each facet extends between six adjacent corners C{1hh} and
C{111}, such as C(1hh), C(1-hh), C(1-11), C(h-h1), C(hh1), C(111). Of
the resulting six edges two connect corners, such asC(1hh) with
C(1-hh), at distances de1 according to (37) while four connect
corners, such as C(1hh) with C(111), at distances de2 given by

de2 = √(3/2)
(
√2R100 −R110

)
. (38)

The largest distance from the polyhedral center to its sur-
face along (a, b, c) directions, sabc(R100, R110), is given by

s100 (R100,R110) = R100 (39a)

s110 (R100,R110) = R110 (39b)

s111 (R100,R110) = √(3/2)R110. (39c)

Further, the area of each square {100} facet is given by F0

where with (37)

F0 = 4
(
√2R110 −R100

)2
(40)

and of each hexagonal {110} facet by F1 where with (14)

F1 = √2
(
√2R100 −R110

) (
3R110 − √2R100

)
. (41)

This yields the total facet surface, Fsurf (sum over all facet
areas) and the volume V tot of the polyhedron according to

Fsurf = 6F0 + 12F1 (42)

Vtot = ( 6F0R100 + 12F1R110)/3. (43)

3.2.2. Cubo-octahedral polyhedra P(R{100}; R{111}). Non-
generic polyhedra P(R{100}; R{111}), denoted cubo-octahedral,
represent intersections of two generic polyhedra, cubic
P(R{100}) and octahedral P(R{111}), see figure 6. If the corners
of the cubic polyhedron P(R{100}) lie inside the octahed-
ral polyhedron P(R{111}), the resulting combination P(R{100};
R{111}) will be generic cubic. This requires

s111 (R100)⩽ s111 (R111) . (44)

and according to (7c) and (19c)

R111 ⩾ √3R100. (45)

On the other hand, if the corners of the octahedral poly-
hedron P(R{111}) lie inside the cubic polyhedron P(R{100}), the
resulting combination P(R{100}; R{111}) will be generic octa-
hedral. This requires

s100 (R111)⩽ s100 (R100) (46)

and according to (7a) and (19a)

R111 ⩽ 1/√3 R100. (47)

Thus, the two generic polyhedra intersect and yield a true
non-generic polyhedron P(R{100}; R{111}) with both {100} and
{111} facets only for facet distances R100, R111 with

1/√3R100 < R111 < √3R100 (48)

while P(R{100}; R{111}) is generic cubic for R111 ⩾ √3 R100 and
generic octahedral for R111 ⩽ 1/√3 R100. As a consequence,
generic polyhedra P(R{100}) and P(R{111}) can be described
alternatively by non-generic P(R{100}; R{111}) where

P
(
R{100}

)
= P

(
R{100};R{111}

)
with R111 ⩾ √3R100 (cubic)

(49a)

P
(
R{111}

)
= P

(
R{100};R{111}

)
with R100 ⩾ √3R111 (octahedral).

(49b)

The surfaces of general cubo-octahedral polyhedra
P(R{100}; R{111}) exhibit 6 {100} facets and 8 {111} facets as
shown in figure 6. Amongst the intersecting species accord-
ing to (48) we can distinguish between truncated octahedral
and truncated cubic with cuboctahedral polyhedra bridging
where

1/√3R100 < R111 < 2/√3R100 (truncated octahedral)
(50a)

2/√3R100 < R111 < √3R100 (truncated cubic) (50b)

R111 = 2/√3R100 (cuboctahedral) (50c)

The surfaces of truncated octahedral polyhedra P(R{100};
R{111}) with 1< √3R111/ R100 < 2 exhibit 6 {100} facets and 8
{111} facets as shown in figure 6(a) and there are 24 polyhed-
ral corners which can be evaluated by methods described in
section S.3 of the supplement. They are described by vectors
C{1h0} relative to the center, where in Cartesian coordinates

C{1h0} = R100 (±1, ± h, 0) ,= R100 (±h, 0, ± 1) ,

= R100 (0, ± 1, ± h) ,= R100 (±1, 0, ± h) ,

= R100 (0, ± h, ± 1) ,= R100 (±h, ± 1, 0)

h= √3R111/R100 − 1 , 0 ⩽ h ⩽ 1. (51)

8
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Figure 6. Sketch of cubo-octahedral polyhedra P(R{100}; R{111}) with front facets in blue and back facets in black, (a) truncated octahedral,
R111/R100 = 0.770, (b) truncated cubic type, R111/R100 = 1.501.

The 6 {100} facets are of the same square shape where each
facet extends between four adjacent corners C{1h0}, such as
C(1h0), C(10h), C(1-h0), C(10-h). The resulting four edges connect
corners, such as C(1h0) with C(10h), at distances df1 given by

df1 = √2
(
√3R111 −R100

)
. (52)

The 8 {111} facets are of the same hexagonal shape where
each facet extends between adjacent cornersC{1h0} andC{111},
such as C(1h0), C(h10), C(01h), C(0h1), C(h01), C(10h). Of the res-
ulting six alternating edges three connect corners, such as
C(1h0) withC(10h), at distances df1 according to (52) while three
connect corners, such as C(1h0) with C(h10), at distances df2
given by

df2 = √2
(
2R100 − √3R111

)
. (53)

For h = 1/2 all 6 edge lengths are equal leading to regular
hexagonal {111} facets. As a result, the polyhedron is remin-
iscent of the shape of Wigner–Seitz cells of bcc crystals [37].

The largest distance from the polyhedral center to its sur-
face along (a, b, c) directions, sabc(R100, R111), is given by

s100 (R100,R111) = R100 (54a)

s110 (R100,R111) = √(3/2)R111 (54b)

s111 (R100,R111) = R111. (54c)

Further, the area of each square {100} facet is given by F0

where with (52)

F0 = 2
(
√3R111 −R100

)2
(55)

and of each hexagonal {111} facet by F1 where with (52)

F1 = (3/2)√3
[
R111

2 −
(
√3R111 −R100

)2
]
. (56)

This yields the total facet surface, Fsurf (sum over all facet
areas) and the volume V tot of the polyhedron according to

Fsurf = 6F0 + 8F1 (57)

Vtot = (6F0R100 + 8F1R111)/3. (58)

The surfaces of truncated cubic polyhedra P(R{100};
R{111}) with 2 < √3R111/ R100 < 3 exhibit also 6 {100} facets
and 8 {111} facets as shown in figure 6(b) and there are
24 polyhedral corners which can be evaluated by methods
described in section S.3 of the supplement. They are described
by vectors C{11g} relative to the center, where in Cartesian
coordinates with (51)

C{11g} = R100 (±1, ± 1, ± g) , = R100 (±1, ± g, ± 1) ,

= R100 (±g, ± 1, ± 1)

g= √3R111/R100 − 2= h− 1 , 0 ⩽ g ⩽ 1. (59)

The 6 {100} facets are of the same octagonal shape where
each facet extends between eight adjacent corners C{11g}, such
as C(11g), C(1g1), C(1-g1), C(1-1g), C(1-1-g), C(1-g-1), C(1g-1), C(11-g).
Of the resulting eight alternating edges four connect corners,
such as C(11g) with C(11-g), at distances df3 while four connect
corners, such as C(11g) with C(1g1), at distances df4 given by

df3 =
(
2√3R111 − 4R100

)
(60)

df4 = √2
(
3R100 − √3R111

)
. (61)

The 8 {111} facets are of the same equilateral triangular
shape where each facet extends between three adjacent C{11g}

corners, such as C(11g), C(g11), C(1g1). The resulting three edges
connect corners, such as C(11g) with C(g11), at distances df4
according to (61).

9
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The largest distance from the polyhedral center to its sur-
face along (a, b, c) directions, sabc(R100, R111), is given by

s100 (R100,R111) = R100 (62a)

s110 (R100,R111) = √2R100 (62b)

s111 (R100,R111) = R111. (62c)

Further, the area of each octagonal {100} facet is given by
F0 where with (51), (60) and (61)

F0 = 4R100
2 − 2

(
3R100 − √3R111

)2
(63)

and of each triangular {111} facet by F1 where with (61)

F1 = √3
(
3R100 − √3R111

)2/
2 . (64)

This yields the total facet surface, Fsurf (sum over all facet
areas) and the volume V tot of the polyhedron according to

Fsurf = 6F0 + 8F1 (65)

Vtot = (6F0R100 + 8F1R111)/3. (66)

There are polyhedra which can be assigned to both trun-
cated cubic and truncated octahedral type, the cuboctahedral
polyhedra P(R{100}; R{111}) with √3R111/R100 = 2.

These polyhedra exhibit also 6 {100} and 8 {111} facets as
shown in figure 7 and there are 12 polyhedral corners which
can be evaluated by methods described in section S.3 of the
supplement. They are described by vectors C{110} relative to
the center, where in Cartesian coordinates

C{110} = R100 (±1, ± 1, 0) , = R100 (±1, 0, ± 1) ,

= R100 (0, ± 1, ± 1) (67)

which can also be derived from (51) with h = 1 or from (59)
with g = 0.

The 6 {100} facets are of the same square shape where
each facet extends between four adjacent corners C{110}, such
as C(110), C(101), C(1-10), C(10-1). The resulting four edges con-
nect corners, such as C(110) with C(101), at distances df5 derived
from (61) and given by

df5 = √2R100. (68)

The 8 {111} facets are of the same equilateral triangu-
lar shape where each facet extends between adjacent corners
C{110}, such as C(110), C(011), C(101). The resulting three edges
connect corners, such as C(110) with C(101), at distances df5
according to (68).

The largest distance from the polyhedral center to its sur-
face along (a, b, c) directions, sabc(R100, R111), is given by

s100 (R100,R111) = R100 (69a)

s110 (R100,R111) = √(3/2) R111 = √2R100 (69b)

Figure 7. Sketch of cuboctahedral polyhedron P(R{100}; R{111})
where R111/R100 = 1.155 with front facets in blue and back facets in
black.

s111 (R100,R111) = R111 =
(
2/√3

)
R100. (69c)

Further, the area of each square {100} facet is given by F0

where with (68)

F0 = 2R100
2 (70)

and of each hexagonal {111} facet by F1 where with (68)

F1 =
(
√3

)
/2R100

2. (71)

Thus, the total facet surface, Fsurf (sum over all facet areas)
and the volume V tot of the polyhedron are given by

Fsurf = 6F0 + 8F1 = 4
(
3 + √3

)
R100

2 (72)

Vtot =
(
6F0R100 + 8F1

(
2/√3R100

) )/
3= (20/3)R100

3 .

(73)

3.2.3. Rhombo-octahedral polyhedra P(R{110}; R{111}). Non-
generic polyhedra P(R{110}; R{111}), denoted rhombo-
octahedral, represent intersections of two generic polyhedra,
rhombohedral P(R{110}) and octahedral P(R{111}), see figure 8.
If the edges of the rhombohedral polyhedron P(R{110}) lie
inside the octahedral polyhedron P(R{111}), the resulting com-
bination P(R{110}; R{111}) will be generic rhombohedral. This
requires

s111 (R110)⩽ s111 (R111) . (74)

and according to (13c) and (19c)

R111 ⩾ √(3/2)R110. (75)

On the other hand, if the corners of the octahedral poly-
hedron P(R{111}) lie inside the rhombohedral polyhedron

10
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Figure 8. Sketch of rhombo-octahedral polyhedron P(R{110};
R{111}), R110/R111 = 0.942, with front facets in blue and back facets
in black.

P(R{110}), the resulting combination P(R{110}; R{111}) will be
generic octahedral. This requires

s100 (R111)⩽ s100 (R110) (76)

and according to (13a) and (19a)

R111 ⩽ √(2/3)R110. (77)

Thus, the two generic polyhedra intersect and yield a true
non-generic polyhedron P(R{110}; R{111}) with both {110} and
{111} facets only for facet distances R110, R111 with

√(2/3)R110 < R111 < √(3/2)R110 (78)

while P(R{110}; R{111}) is generic rhombohedral
for R111 ⩾ √(3/2) R110 and generic octahedral for
R111 ⩽ √(2/3) R110. As a consequence, generic polyhedra
P(R{110}) and P(R{111}) can be described alternatively by non-
generic P(R{110}; R{111}) where

P
(
R{110}

)
= P

(
R{110};R{111}

)
with

R111 ⩾ √(3/2)R110 (rhombohedral) (79a)

P
(
R{111}

)
= P

(
R{110};R{111}

)
with

R110 ⩾ √(3/2)R111 (octahedral) . (79b)

The surfaces of general rhombo-octahedral polyhedra
P(R{110}; R{111}) exhibit 12 {110} facets and 8 {111} facets
as shown in figure 8.

There are 30 polyhedral corners which can be evaluated by
methods described in section S.3 of the supplement. They fall
into two groups of 6 and 24 corners each, described by vec-
tors C{100} and C{1hh} relative to the center, where in Cartesian
coordinates

C{100} = √2R110 (±1, 0, 0) , = √2R110 (0, ± 1, 0) ,

= √2R110 (0, 0, ± 1)

C{1hh} = R (±1, ± h, ± h) , = R (±h, ± 1, ± h) ,

= R (±h, ± h, ± 1)

R= 2√2R110 − √3R111 , h=
(
√3R111 − √2R110

)
/R , 0 ⩽ h ⩽ 1 .

(80)

The 12 {110} facets are of the same hexagonal shape where
each facet extends between six adjacent corners C{100} and
C{1hh}, such as C(100), C(1hh), C(hh1), C(001), C(h-h1), C(1-hh). Of
the resulting six edges two connect corners, such asC(1hh) with
C(hh1), at distances dg1 while four connect corners, such as
C(100) with C(1hh), at distances dg2 given by

dg1 = √2
(
3√2R110 − 2√3R111

)
(81)

dg2 = √3
(
√3R111 − √2R110

)
. (82)

The 8 triangular {111} facets are of the same equilateral
triangular shape where each facet extends between adjacent
cornersC{1hh}, such asC(1hh),C(h1h),C(hh1). The resulting three
edges connect corners, such as C(1hh) with C(hh1), at distances
dg1 according to (81).

The largest distance from the polyhedral center to its sur-
face along (a, b, c) directions, sabc(R110, R111), is given by

s100 (R110,R111) = √2R110 (83a)

s110 (R110,R111) = R110 (83b)

s111 (R110,R111) = R111. (83c)

Further, the area of each hexagonal {110} facet is given by
F0 where with (80)

F0 = 2√2
(
√3R111 − √2R110

) (
2√2R110 − √3R111

)
(84)

and of each triangular {111} facet by F1 where with (81)

F1 = √(3/4)
(
3√2R110 − 2√3R111

)2
(85)

This yields the total facet surface, Fsurf (sum over all facet
areas) and the volume V tot of the polyhedron according to

Fsurf = 12F0 + 8F1 (86)

Vtot = (12F0R110 + 8F1R111)/3. (87)
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3.2.4. Cubo-rhombo-octahedral polyhedra
P(R{100}; R{110};R{111}). Non-generic polyhedra P(R{100};
R{110}; R{111}), denoted cubo-rhombo-octahedral, represent
intersections of three generic polyhedra, cubic P(R{100}),
rhombohedral P(R{110}), and octahedral P(R{111}). Thus, they
show in the most general case {100}, {110}, and {111} facets.
A full discussion of these polyhedra requires results for gen-
eric and non-generic polyhedra, see sections 3.1 and 3.2.1–3,
as will be detailed in the following.

First, we consider the general notation for generic poly-
hedra discussed in section 3.1. Cubic polyhedra P(R{100})
lie completely inside rhombohedral polyhedra P(R{110}) if
R110 ⩾ √2 R100 according to (31) and inside octahedral poly-
hedra P(R{111}) if R111 ⩾ √3 R100 according to (45). This leads
to polyhedra P(R{100}; R{110}; R{111}) which are generic cubic
where

P
(
R{100};R{110};R{111}

)
= P

(
R{100}

)
if

R100 ⩽min
(
1/√2R110, 1/√3R111

)
. (88)

The two constraints on R100 can also be interpreted as cubic
P(R{100}) lying completely inside rhombo-octahedral P(R{110};
R{111}).

Rhombohedral polyhedra P(R{110}) lie completely inside
cubic polyhedra P(R{100}) if R100 ⩾ √2 R110 according to (32)
and inside octahedral polyhedra P(R{111}) if R111 ⩾ √(3/2) R110

according to (75). This leads to polyhedra P(R{100}; R{110};
R{111}) which are generic rhombohedral where

P
(
R{100};R{110};R{111}

)
= P

(
R{110}

)
if

R110 ⩽min
(
1/√2R100,√(2/3) R111

)
. (89)

The two constraints onR110 can also be interpreted as rhom-
bohedral P(R{110}) lying completely inside cubo-octahedral
P(R{100}; R{111}).

Octahedral polyhedra P(R{111}) lie completely inside cubic
polyhedra P(R{100}) if R100 ⩾ √3 R111 according to (47) and
inside rhombohedral polyhedra P(R{110}) if R110 ⩾ √(3/2) R111

according to (77). This leads to polyhedra P(R{100}; R{110};
R{111}) which are generic octahedral where

P
(
R{100};R{110};R{111}

)
= P

(
R{111}

)
if

R111 ⩽min
(
1/√3R100,√(2/3) R110

)
. (90)

The two constraints on R111 can also be interpreted as
octahedral P(R{111}) lying completely inside cubo-rhombic
P(R{100}; R{110}).

General notations of non-generic polyhedra with two facet
types, discussed in sections 3.2.1–3, are obtained by analog-
ous arguments combining the previous constraints. True cubo-
rhombic polyhedra P(R{100}; R{110}) with (34) lie completely

inside octahedral polyhedra P(R{111}) ifR111 ⩾ √3R100 accord-
ing to (45) and if R111 ⩾ √(3/2) R110 according to (75). Thus,

P
(
R{100};R{110};R{111}

)
= P

(
R{100};R{110}

)
if

R111 ⩾min
(
√3R100,√(3/2) R110

)
(91)

yielding with (34)

R111 ⩾ √(3/2) R110. (92)

True cubo-octahedral polyhedra P(R{100}; R{111}) with (48)
lie completely inside rhombohedral polyhedra P(R{110}) if
R110 ⩾ √2 R100 according to (31) and if R110 ⩾ √(3/2) R111

according to (77). Thus,

P
(
R{100};R{110};R{111}

)
= P

(
R{100};R{111}

)
if

R110 ⩾min
(
√2R100,√(3/2) R111

)
(93)

yielding with (50a)–(50c)

R110 ⩾ √(3/2) R111 for

P
(
R{100};R{111}

)
of truncated octahedral type

(94a)

R110 ⩾ √2R100 for

P
(
R{100};R{111}

)
of truncated cubic type (94b)

R110 = √2R100 = √(3/2) R111 for

P
(
R{100};R{111}

)
of cuboctahedral type (94c)

True rhombo-octahedral polyhedra P(R{110}; R{111})
with (78) lie completely inside cubic polyhedra P(R{100})
if R100 ⩾ √2 R110 according to (32) and if R100 ⩾ √3 R111

according to (47). Thus,

P
(
R{100};R{110};R{111}

)
= P

(
R{110};R{111}

)
if

R100 ⩾min
(
√2R110,√3R111

)
(95)

yielding with (78)

R100 ⩾ √2R110. (96)

The above constraints on Rabc can be rephrased to treat the
most general case of true cubo-rhombo-octahedral polyhedra
P(R{100};R{110};R{111}) which exhibit {100}, {110}, as well as
{111} facets. According to (34), true cubo-rhombic P(R{100};
R{110}) appear for

1/√2R110 < R100 < √2R110. (97)

12
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Intersecting P(R{100}; R{110}) with P(R{111}) to yield a
true non-generic polyhedron P(R{100}; R{110}; R{111}) requires
according to (91) and (90)

√(2/3) R111 < R110 < √(3/2) R111 (98)

1/√3R100 < R111 < √3R100. (99)

Altogether, true non-generic polyhedra P(R{100}; R{110};
R{111}) appear if constraints (97)–(99) are fulfilled.

Intersecting P(R{100}; R{111}) with P(R{110}) to yield a
true non-generic polyhedron P(R{100}; R{110}; R{111}) is found
to yield constraints on the facet distances Rabc which are
identical with (97)–(99). This applies also to intersecting
P(R{110}; R{111}) with P(R{100}). Thus, a complete analysis
of the structure of true cubo-rhombo-octahedral polyhedra
P(R{100}; R{110}; R{111}) can be achieved by considering only
one scenario where, in the following, we focus on intersecting
cubo-rhombic P(R{100}; R{110}) with octahedral P(R{111}).

3.2.4.1. Polyhedra P(R{100};R{110};R{111}) by intersection.
Intersecting cubo-rhombic P(R{100}; R{110}) with octahed-
ral P(R{111}) polyhedra results in different polyhedral shapes
depending on the relative sizes of the corresponding facet
distances Rabc. Fixing R100 and R110 with (97) the shape of
P(R{100}; R{110}; R{111}) is fully determined by the size of its
facet distance R111. According to (97), (98) and (90) R111 must
always be within the range

1/√3R100 ⩽ R111 ⩽ √(3/2) R110 (100)

where there are two regions leading to different polyhedral
shape,

outer region : Rs111 ⩽ R111 ⩽ √(3/2) R110with

Rs111 = 1√3
(
2√2R110 −R100

)
(101)

inner region : Rb111 ⩽ R111 ⩽ Rs111 with

Rb111 = √(2/3) R110 (102)

as illustrated in figure 9 by a cubo-rhombic polyhedron
P(R{100}; R{110}) where the dashed red triangle shows a cut
along {111} indicating the boundary between the outer and
inner region of corresponding cubo-rhombo-octahedral poly-
hedra P(R{100}; R{110}; R{111}).

The outer region is determined by R111 values with
Rs111 ⩽ R111 ⩽ √(3/2) R110 according to (101). Here the ini-
tial polyhedron P(R{100}; R{110}) is capped at its corners C{111}

forming {111} facets. This results in 6 {100}, 12 {110}, and
8 {111} facets as shown in figure 10.

There are 48 polyhedral corners which can be evaluated
by methods described in section S.3 of the supplement. They
fall into two groups of 24 corners each, described by vectors
C{1gg} and C{1hh} relative to the center, where in Cartesian
coordinates

Figure 9. Sketch of cubo-rhombic polyhedron P(R{100}; R{110}),
R110/R100 = 0.884, R111/R100 = 1.083, with front facets in blue and
back facets in black. The dashed red triangle shows a cut along
{111} indicating the boundary between the outer and inner region of
corresponding cubo-rhombo-octahedral polyhedra P(R{100}; R{110};
R{111}) for R111 = Rs111, R111/R100 = 0.866, see text.

Figure 10. Sketch of cubo-rhombo-octahedral polyhedron P(R{100};
R{110}; R{111}), R110/R100 = 0.884, R111/R100 = 1.010, R111 ⩾ Rs111
(outer region), see text, with front facets in blue and back facets in
black.

C{1gg} = R100 (±1, ± g, ± g) , = R100 (±g, ± 1, ± g) ,

= R100 (±g, ± g, ± 1) ,

C{1hh} = R (±1, ± h, ± h) , = R (±h, ± 1, ± h) ,

= R (±h, ± h, ± 1)

g=
(
√2R110 −R100

)
/R100, h=

(
√3R111 −√2R110

)
/R

0⩽ g ⩽ 1 , 0 ⩽ h ⩽ 1 , R=
(
2√2R110 −√3R111

)
.

(103)

The 6 {100} facets are of the same square shape where each
facet extends between four adjacent corners C{1gg}, such as

13
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C(1gg),C(1-gg),C(1-g-g),C(1g-g). The resulting four edges connect
corners, such as C(1gg) with C(1-gg), at distances dh1 given by

dh1 = 2
(
√2R110 −R100

)
. (104)

The 12 {110} facets are of the same octagonal shape
where each facet extends between eight adjacent corners
C{1gg} and C{1hh}, such as C(1gg), C(1hh), C(hh1), C(gg1), C(g-g1),
C(h-h1), C(1-hh), C(1-gg). Of the resulting eight edges two con-
nect corners, such as C(1gg) with C(1-gg), at distances dh1 given
by (104) while another two connect corners, such as C(1hh) to
C(hh1), at distances dh2 and four connect corners, such as C(1gg)

with C(1hh), at distances dh3 given by

dh2 = √2
(
3√2R110 − 2√3R111

)
(105)

dh3 = √3
(
R100 − 2√2R110 + √3R111

)
. (106)

The 8 {111} facets are of the same equilateral triangu-
lar shape where each facet extends between adjacent corners
C{1hh}, such as C(1hh), C(h1h), C(hh1). The resulting three edges
connect corners, such as C(1hh) with C(hh1), at distances dh2
according to (105).

Clearly, the largest distance from the polyhedral center to its
surface along (a, b, c) directions, sabc(R100, R110, R111), equals
the corresponding facet distance Rabc i.e.

sabc (R100,R110,R111) = Rabc. (107)

Further, the area of each square {100} facet is given by F0

where with (104)

F0 = 4
(
√2R110 −R100

)2
(108)

and of each octagonal {110} facet by F1 where with (103)

F1 = 2√2
[(

√3R111 − √2R110

) (
2√2R110 − √3R111

)
−
(
√2R110 −R100

)2
]

(109)

and of each triangular {111} facet by F2 where with (105)

F2 =
(
√3

)
/2

(
3√2R110 − 2√3R111

)2
. (110)

This yields the total facet surface, Fsurf (sum over all facet
areas) and the volume V tot of the polyhedron according to

Fsurf = 6F0 + 12F1 + 8F2 (111)

Vtot = (6F0R100 + 12F1R110 + 8F2R111)/3. (112)

At the bottom of the outer region, i.e. for R111 = Rs111
according to (101) the polyhedron P(R{100}; R{110}; R{111})
assumes a particular shape. As before, there are 6 {100}, 12
{110}, and 8 {111} facets as shown in figures 11(a) and (b).

However, the number of polyhedral corners is reduced to 24
and their Cartesian coordinates are obtained from (103) setting
R111 = Rs111 with (101) which yields

R= R100 , g= h=
(
√2R110 −R100

)
/R100 (113)

and thus

C{1gg} = R100 (±1, ± g, ± g) , = R100 (±g, ± 1, ± g) ,

= R100 (±g, ± g, ± 1) . (114)

The 6 {100} facets are of the same square shape where each
facet extends between four adjacent corners C{1gg}, such as
C(1gg),C(1-gg),C(1-g-g),C(1g-g). The resulting four edges connect
corners, such as C(1gg) with C(1-gg), at distances dh4 given by

dh4 = 2
(
√2R110 −R100

)
. (115)

The 12 {110} facets are of the same rectangular shape
where each facet extends between four adjacent cornersC{1gg},
such asC(1gg),C(gg1),C(g-g1),C(1-gg). Of the resulting four edges
two connect corners, such asC(1gg) withC(1-gg), at distances dh4
according to (115) while two connect corners, such as C(1gg)

with C(gg1), at distances dh5 given by

dh5 = √2
(
2R100 − √2R110

)
. (116)

The 8 {111} facets are of the same equilateral triangu-
lar shape where each facet extends between adjacent corners
C{1gg}, such as C(1gg), C(g1g), C(gg1). The resulting three edges
connect corners, such as C(1gg) with C(gg1), at distances dh5
according to (116).

Clearly, the largest distance from the polyhedral center to its
surface along (a, b, c) directions, sabc(R100, R110, R111), equals
the corresponding facet distance Rabc i.e.

sabc (R100,R110,R111) = Rabc. (117)

Further, the area of each square {100} facet is given by F0

where with (115)

F0 = 4
(
√2R110 −R100

)2
(118)

and of each rectangular {110} facet by F1 where with (115)
and (116)

F1 = 2√2
(
√2R110 −R100

) (
2R100 − √2R110

)
(119)

14



J. Phys.: Condens. Matter 36 (2024) 045303 K E Hermann

Figure 11. Sketch of cubo-rhombo-octahedral polyhedron P(R{100}; R{110}}; R{111}) with (a) R110/R100 = 0.884, R111/R100 = 0.866, (b)
R110/R100 = 1.282, R111/R100 = 1.516, R111 = Rs111, see text, with front facets in blue and back facets in black.

and of each triangular {111} facet by F2 where with (116)

F2 =
(
√3

)
/2

(
2R100 − √2R110

)2
. (120)

This yields the total facet surface, Fsurf (sum over all facet
areas) and the volume V tot of the polyhedron according to

Fsurf = 6F0 + 12F1 + 8F2 (121)

Vtot = (6F0R100 + 12F1R110 + 8F2R111)/3. (122)

Polyhedra P(R{100}; R{110}; R{111}) with R111 = Rs111 and
R110 less than but close to √2 R100 take the shape of cubes
whose edges and corners are capped, as shown in figure 11(b),
where the capping becomes smaller for R110 closer to √2 R100.
These polyhedra can be used to simulate cubic NPs with
smooth edges and corners observed in many experiments men-
tioned in section 3.1.1.

The inner region is determined by R111 values with
Rb111 ⩽ R111 ⩽ Rs111 according to (102) and (101). Here the
polyhedron P(R{100};R{110};R{111}) withR111 =Rs111 is capped
further which still results in 6 {100}, 12 {110}, and 8 {111}
facets, however, with changed shapes as shown in figure 12
and discussed below.

There are 48 polyhedral corners which can be evaluated
by methods described in section S.3 of the supplement. They
are described by vectors C{1gh} relative to the center, where in
Cartesian coordinates

Figure 12. Sketch of cubo-rhombo-octahedral polyhedron
P(R{100}; R{110}; R{111}), R110/R100 = 1.061, R111/R100 = 1.010,
Rb111 ⩽ R111 ⩽ Rs111 (inner region), see text, with front facets in blue
and back facets in black.

C{1gh} = R100 (±1, ± g, ± h) ,= R100 (±g, ± 1, ± h) ,

= R100 (±g, ± h, ± 1) ,= R100 (±1, ± h, ± g) ,

= R100 (±h, ± 1, ± g) ,= R100 (±h, ± g, ± 1)

g=
(
√2R110 −R100

)
/R100, h=

(
√3R111 −√2R110

)
/R100

0⩽ g ⩽ 1 , 0 ⩽ h ⩽ 1. (123)

The 6 {100} facets are of the same octagonal shape where
each facet extends between eight adjacent corners C{1gh}, such
as C(1gh), C(1hg), C(1-hg), C(1-gh), C(1-g-h), C(1-h-g), C(1h-g), C(1g-h).
Of the resulting eight alternating edges four connect corners,
such as C(1gh) with C(1g-h), at distances dh6 while four connect
corners, such as C(1gh) with C(1hg), at distances dh7 given by
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Figure 13. Sketch of cubo-rhombo-octahedral polyhedra P(R{100}; R{110}; R{111}) with R111 = Rb111, see text. (a) R110/R100 = 0.943,
R111/R100 = 0.770, cubo-octahedral (truncated octahedral); (b) R110/R100 = 1.414, R111/R100 = 1.155, cuboctahedral. Front facets are shown
in blue and back facets in black.

dh6 = 2
(
√3R111 − √2R110

)
(124)

dh7 = √2
(
2√2R110 −R100 − √3R111

)
. (125)

The 12 {110} facets are of the same rectangular shape
where each facet extends between four adjacent cornersC{1gh},
such as C(1gh), C(1g-h), C(g1-h), C(g1h). Of the resulting four
alternating edges two connect corners, such as C(1gh) with
C(1g-h), at distances dh6 according to (124) while two connect
corners, such as C(1gh) with C(g1h), at distances dh8 given by

dh8 = √2
(
2R100 − √2R110

)
. (126)

The 8 {111} facets are of the same hexagonal shape where
each facet extends between six adjacent corners C{1gh}, such
as C(1gh), C(g1h), C(h1g), C(hg1), C(gh1), C(1hg). Of the resulting
six alternating edges three connect corners, such as C(1gh) with
C(g1h), at distances dh8 according to (126) while three connect
corners, such as C(1gh) with C(1hg), at distances dh7 according
to (125).

Clearly, the largest distance from the polyhedral center to its
surface along (a, b, c) directions, sabc(R100, R110, R111), equals
the corresponding facet distance Rabc i.e.

sabc (R100,R110,R111) = Rabc. (127)

Further, the area of each octagonal {100} facet is given by
F0 where with (124) and (125)

F0 = 4
(
√2R110 −R100

)2
− 2

(
2√2R110 −R100 − √3R111

)2

(128)

and of each rectangular {110} facet by F1 where with (115)
and (116)

F1 = 2√2(√3R111 − √2R110)(2R100 − √2R110) (129)

and of each hexagonal {111} facet by F2 where with (125)
and (126)

F2 = √3
[(

3R110 − √6R111

)2

− (3/2)
(
2√2R110 −R100 − √3R111

)2
]
. (130)

This yields the total facet surface, Fsurf (sum over all facet
areas) and the volume V tot of the polyhedron according to

Fsurf = 6F0 + 12F1 + 8F2 (131)

Vtot = (6F0R100 + 12F1R110 + 8F2R111)/3. (132)

At the bottom of the inner region, i.e. for R111 = Rb111
according to (102) the polyhedron P(R{100}; R{110}; R{111})
assumes a particular shape. The 12 {110} facets of the poly-
hedron with R111 in the inner region are reduced to lines
and there are only 6 {100} and 8 {111} facets as shown
in figure 13. In fact, the polyhedron is described as cubo-
octahedral P(R{100}; R{111}) of the truncated octahedral type
(R111/ R100 < 2/√3) or of the cuboctahedral (R111/ R100 = 2/√3)
type which has been discussed in detail in section 3.2.2.

There are two alternative intersection procedures to achieve
a true non-generic polyhedron P(R{100}; R{110}; R{111}) which,
however, lead to the same shapes and identical formulas for
corner coordinates and all other structural parameters which
have been discussed above. Therefore, they will be outlined
only briefly in the following.

Intersecting cubo-octahedral P(R{100}; R{111}) with rhom-
bohedral P(R{110}) polyhedra is achieved by fixing R100 and
R111 with (99). Then the shape of P(R{100}; R{110}; R{111})
is fully determined by the size of its facet distance R110.
Here we distinguish between P(R{100}; R{111}) of the trun-
cated octahedral and of the truncated cubic type according
to (50a) and (50b). For truncated octahedral polyhedra, see
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Figure 14. Sketch of cubo-octahedral polyhedra P(R{100}; R{111}), (a) truncated octahedral type, R111/R100 = 0.770, R110/R100 = 0.943, and
(b) truncated cubic type, R111/R100 = 1.501, R110/R100 = 1.414,with front facets in blue and back facets in black. The dashed red rectangles
show cuts along {110} indicating the boundaries between outer and inner regions of the corresponding cubo-rhombo-octahedral polyhedra
P(R{100}; R{110}; R{111}) for R110 = Rs110 and (a) R110/R100 = 0.825, (b) R110/R100 = 1.273.

figure 14(a), and according to (97)–(99) R110 must always be
within the range

max
(
√(2/3) R111,R100/√2

)
⩽ R110 ⩽ √(3/2) R111 (133)

where there are two regions of different polyhedral shape,

outer region : Rs
110

⩽ R110 ⩽ √(3/2) R111,

Rs110 = 1/√8
(
√3R111 +R100

)
(134)

inner region : Rb110 ⩽ R110 ⩽ Rs110,

Rb110 =max
(
√(2/3) R111,R100/√2

)
. (135)

For truncated cubic polyhedra, see figure 14(b), and accord-
ing to (97)–(99) R110 must always be within the range

max
(
√(2/3) R111,R100/√2

)
⩽ R110 ⩽ √2R111 (136)

where there are two regions of different polyhedral shape
with (134) and (135),

outer region : Rs110 ⩽ R110 ⩽ R100/√2 (137)

inner region : Rb110 ⩽ R110 ⩽ Rs110. (138)

As an illustration, figure 14 shows cubo-octahedral poly-
hedra P(R{100}; R{111}) of the truncated octahedral and trun-
cated cubic type where the dashed red rectangles refer to cuts
along {110} indicating the boundaries between the outer and
inner region of corresponding cubo-rhombo-octahedral poly-
hedra P(R{100}; R{110}; R{111}).

Intersecting rhombo-octahedral P(R{110};R{111}) with cubic
P(R{100}) polyhedra is achieved by fixing R110 and R111

with (98). Then the shape of P(R{100}; R{110}; R{111}) is fully

Figure 15. Sketch of rhombo-octahedral polyhedron P(R{110};
R{111}), R110/R111 = 0.942, R100/R111 = 1.332, with front facets in
blue and back facets in black. The dashed red square shows a cut
along {100} indicating the boundary between the outer and inner
region of corresponding cubo-rhombo-octahedral polyhedra
P(R{100}; R{110}; R{111}) for R100 = Rs100, R100/R111 = 0.933, see text.

determined by the size of its facet distance R100. According
to (97)–(99) R100 must always be within the range

1/√2R110 ⩽ R100 ⩽ √2R110 (139)

where there are two regions leading to different polyhedral
shape,

outer region : Rs100 ⩽ R100 ⩽ √2R110 , Rs110 = 2√2R110 − √3R111

(140)

inner region : Rb100 ⩽ R100 ⩽ Rs111 , Rb100 = 1/√2R110.
(141)

As an illustration, figure 15 shows a rhombo-octahedral
polyhedron P(R{110}; R{111}) where the dashed red square
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Figure 16. Phase diagram of all shapes of cubo-rhombo-octahedral
polyhedra P(R{100}; R{110}; R{111}) with x110 and x111 as order
parameters. The different phases are shown by different colors and
labeled accordingly. Arrows denote shift directions of shape
identical polyhedra, see text.

shows a cut along {100} indicating the boundary between
the outer and inner region of corresponding cubo-rhombo-
octahedral polyhedra P(R{100}; R{110}; R{111}).

3.2.4.2. Classification of P(R{100}; R{110}; R{111}). The discus-
sion in sections 3.2.1–3 and 3.2.4.1 allows a full classification
of all shapes of polyhedra P(R{100}; R{110}; R{111}) with Oh

symmetry according to the choice of the three facet distances
R100, R110, R111. First, we note that scaling R100, R110, R111 by
the same factor does not change the shape of a polyhedron.
Thus, fixing R100 at any value allows to discriminate between
all shapes by considering only two parameters derived from
relative facet distances x110 and x111 where

x110 = √2R110/R100, x111 = √3R111/R100. (142)

This leads to a two-dimensional phase diagram with x110,
x111 as order parameters and shown in figure 16.

True cubo-rhombo-octahedral polyhedra P(R{100}; R{110};
R{111}) are defined by (97)–(99) which converts to

1 < x110 < 2 (143)

2/3x111 < x110 < x111 (144)

1< x111 < 3 (145)

and corresponds to the central quadrangular area labeled ‘cro’
and confined by thick lines (cro phase) in figure 16. Here the

dashed line, defined according to (101) and converted to

x111 = 2x110 − 1 (146)

separates polyhedra of the outer region (labeled ‘out’) from
those of the inner region (labeled ‘in’).

True cubo-rhombic polyhedra P(R{100}; R{110) are defined
by (97) and (91) which converts to

1 < x110 < 2 (147)

x111 ⩾ min(3, 3/2x110) = 3/2x110 (148)

and corresponds to the infinite vertical strip labeled ‘cr’ (cr
phase) in figure 16. Polyhedra of this phase along (vertical)
lines of fixed x110 differ only by the size of the octahedral poly-
hedron P(R{111}) outside P(R{100}; R{110). Therefore, they are
identical with their counterparts at the cr/cro phase boundary
obtained by vertical shifting according to

(x110,x111) → (x110,x111 = 3/2x110) (149)

in the phase diagram, see vertical arrow in figure 16.
True cubo-octahedral polyhedra P(R{100};R{111) are

defined by (99) and (93) which converts to

1 < x111 < 3 (150)

x110 ⩾min(2 ,x111) (151)

and corresponds to the infinite horizontal strip labeled ‘co’ (co
phase) in figure 16. Here the dashed line, defined according
to (50c) and converted to

x111 = 2 (152)

separates polyhedra of the truncated octahedral type (x111 ⩽ 2,
labeled ‘oct’) from those of the truncated cubic type (x111 ⩾ 2,
labeled ‘cub’). Polyhedra of this phase along (horizontal) lines
of fixed x111 differ only by the size of the rhombohedral poly-
hedron P(R{110}) outside P(R{100}; R{111). Therefore, they are
identical with their counterparts at the co/cro phase boundary
obtained by horizontal shifting according to

(x110,x111) → (x110 = x111,x111) (truncated octahedral)
(153a)

(x110,x111) → (x110 = 2,x111) (truncated cubic)
(153b)

in the phase diagram, see horizontal arrows in figure 16. In
analogy, the dashed horizontal line inside the co phase refers
to the same cuboctahedral polyhedron for all x110 values which
suggests a shift to the co/cro phase boundary according to

(x110,x111 = 2) → (x110 = 2, x111 = 2) (cuboctahedral).
(153c)
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True rhombo-octahedral polyhedra P(R{110}; R{111}) are
defined by (78) and (95) which converts to

x110 < x111 < 3/2 x110 (154)

min(x110,x111) = x110 ⩽ 1 (155)

and corresponds to the triangular area labeled ‘ro’ (ro phase)
in figure 16. Polyhedra of this phase along (radial) lines of
fixed x111/x110 differ only by the size of the cubic polyhed-
ron P(R{100}) outside P(R{110}; R{111}). Therefore, they are
identical with their counterparts at the ro/cro phase boundary
obtained by radial shifting from the coordinate origin accord-
ing to

(x110,x111) → (x110 = 1, x111/x110) (156)

in the phase diagram, see diagonal arrow in figure 16.
Generic cubic polyhedra P(R{100}) are defined by (31)

and (45) which converts to

x110 ⩾ 2 (157)

x111 ⩾ 3 (158)

and corresponds to the infinite rectangular area labeled ‘c’ (c
phase) in figure 16. Polyhedra of this phase are identical with
their counterpart at the point

x110 = 2, x111 = 3 (159)

(joining c, cr, cro, and co phases as indicated by an arrow
in figure 16) since they differ only by the size of the generic
rhombohedral and octahedral polyhedra outside P(R{100}).

Generic rhombohedral polyhedra P(R{110}) are defined
by (32) and (75) which converts to

x100 ⩽ 1 (160)

x111 ⩾ 3/2x110 (161)

and corresponds to the infinite vertical strip labeled ‘r’ (r
phase) in figure 16. Polyhedra of this phase are identical with
their counterpart at the point

x110 = 1, x111 = 3/2 (162)

(joining r, ro, cro, and cr phases as indicated by an arrow in
figure 16) since they differ only by the size of the generic cubic
and octahedral polyhedra outside P(R{110}).

Generic octahedral polyhedra P(R{111}) are defined by (47)
and (77) which converts to

x111 ⩽ 1 (163)

x110 ⩾ x111 (164)

and corresponds to the infinite horizontal strip labeled ‘o’ (o
phase) in figure 16. Polyhedra of this phase are identical with
their counterpart at the point

x110 = 1, x111 = 1 (165)

(joining o, co, cro, and ro phases as indicated by an arrow in
figure 16) since they differ only by the size of the generic cubic
and rhombohedral polyhedra outside P(R{111}).

Altogether, the phase diagram shown in figure 16 covers
all possible definitions of cubo-rhombo-octahedral polyhedra
P(R{100}; R{110}; R{111}) where, however, polyhedra of truly
different shape are already fully accounted for by x110, x111
values inside the quadrangular area defined by (143)–(145)
including its edges and corners which can be described as

1 ⩽ x110 ⩽ 2 (166)

x110 ⩽ x111 ⩽ 3/2 x111. (167)

If the polyhedra are to limit NPs which represent sections
with internal cubic bulk structure, as discussed previously [5],
then facet distancesR100,R110, andR111 assume discrete values
due to the lattice periodicity. As a result, parameters x110 and
x111 become fractional, forming a discrete periodic array of
points inside the phase diagram where the periodicity cells are
square for sc, rectangular 1 × 2 for fcc, and rectangular 2 × 1
for bcc lattices. Further, the cell size decreases with increasing
NP size. This is illustrated in figure 17 showing the phase dia-
gram of figure 16 with an added array of points, corresponding
to an atom centered NP with internal fcc lattice. Here the facet
distances are given by

R100 = N ao/2 , R110 =Maoa/
(
2√2

)
,

R111 = Kao/√3 , N, M, K integer (168)

with ao denoting the lattice constant and hence according
to (142)

x110 =M/N, x111 = 2K/N (169)

where in figure 17 the array refers to R100 = 4ao, i.e. N = 8.
There are two alternative classification schemes of poly-

hedral shapes which are mentioned only briefly and discussed
in detail in section S.2 of the supplement. First, fixing R110 at
any value allows to discriminate between all shapes of poly-
hedra P(R{100}; R{110}; R{111}) by considering two parameters
derived from relative facet distances y100 and y111 where

y100 = R100/
(
√2R110

)
, y111 = √3R111/

(
√2R110

)
.

(170)
This leads to a two-dimensional phase diagram with y100,

y111 as order parameters and shown in figure 18(a). Second,
fixing R111 at any value allows to discriminate between all
shapes by considering two parameters derived from relative
facet distances z100 and z110 where

z100 = R100/
(
√3R111

)
, z110 = √2R110/

(
√3R111

)
(171)

This leads to a two-dimensional phase diagram with z100,
z110 as order parameters and shown in figure 18(b).
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Figure 17. Phase diagram of all shapes of cubo-rhombo-octahedral polyhedra P(R{100}; R{110}; R{111}) with x110 and x111 as order
parameters. The different phases are shown by colors identical with those of figure 16. The array of points illustrates possible values of x110,
x111 corresponding to a NP with internal fcc lattice and R100 = 4ao, see text.

Figure 18. Phase diagram of all shapes of cubo-rhombo-octahedral polyhedra P(R{100}; R{110}; R{111}); (a) with y100 and y111 as order
parameters, (b) with z100 and z110 as order parameters. The different phases are shown by different colors and labeled accordingly, see text.

4. Conclusions

The present theoretical analysis gives a full account of the
shapes and structure of compact polyhedra with cubic Oh sym-
metry where all properties are discussed in analytical and
numerical detail with visualization of characteristic examples.
The polyhedral surfaces are described by facets representing
planar sections with normal vectors along selected Cartesian
directions (a, b, c) together with their Oh symmetry equival-
ents. Here we focus on facets reflecting normal directions of
families {abc} = {100}, = {110}, and = {111} which are

suggested for metal and oxide NPs with cubic lattices, rep-
resenting sections of high-density monolayers of the cubic
bulk. The structure evaluation identifies three types of gen-
eric polyhedra, cubic, rhombohedral, and octahedral (as spe-
cial cases of hexoctahedral), which can serve for the descrip-
tion of non-generic polyhedra as intersections of correspond-
ing generic species. Their structural properties are shown to
be fully determined by only three structure parameters, facet
distances R100, R110, and R111 of the three types of facets. In
fact, all polyhedral shapes can already be characterized by
only two relative facet distances, such as x110 = √2R110/R100
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and x111 = √3R111/R100 which provides a novel phase diagram
systematically classifying the polyhedra. If the polyhedra con-
fine crystalline NPs forming sections with internal cubic bulk
structure, then parameters x110 and x111 in the phase diagram
become fractional to yield a discrete periodic array with square
or rectangular periodicity cells where the cell size decreases
with increasing NP size.

Further, structural properties of generic polyhedra of Oh

symmetry, confined by facets with normal vectors of one gen-
eral {abc} family have been studied in analytical and numer-
ical detail. These hexoctahedral polyhedra yield up to 48 facet
directions and are shown to be fully characterized by only a
facet distance Rabc and all facet indices, a, b, c, of the corres-
ponding facet normal vector family {abc}.

Clearly, there is a multitude of other polyhedra of Oh sym-
metry with mixtures of facets that are described by different
facet directions {abc} not accounted for in this work and hav-
ing to be dealt with separately in each case. Also, polyhedra
of other symmetries, like hexagonal [21] or icosahedral [22,
23], need to be considered. However, the present results cover
already the large set of polyhedra with cubic symmetry, which
allows a unique systematic classification.

Altogether, the present analysis offers a sound basis to
describe compact polyhedra of cubic symmetry which may be
used as a repository available for NP simulations. Further, it
can help the interpretation of structures of real compact NPs
observed by experiment and can also stimulate further exper-
imental research on nano- and mesoscopic particle structures,
not identified so far.
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